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PREI'ACE

This formal technical report entitled "3-D Stress
Wave Code for the ILLIAC IV,' is submitted by Systems,
Science and Sottware (S®) to the Advanced Research Projects
Agency (ARPA) and to the Defense Nuclear Agency (DNA) .

The report presents the results of a continued effort
to develop a versatile numerical scheme for simulating 3-D
stress waves on the ILLIAC IV computer system.

This work was supported by the Advanced Research
Projects Agency and was monitored by the Defense Nuclear
Agency under Contract No. DNA 00i-72-C-0154. Colonel David
C. Russell has been the ARPA Program Manager and Lt. Colonel
F. J. Leech has been the DNA Project Scientist.

Dr. Gerald A. Frazier has been the S® Project Manager.
Much help and advice has been obtained from the User Support
Group of the IAC. The authors are also grateful for many

valuable communications with other users of the ILLIAC IV
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I. INTRODUCTION

Over the past twenty months, we have formulated,
developed, and implemented two numerical computer codes for
processing stress wave calculations on the ILLIAC IV com-
puter. Our primary goal has been to develop a capability
for performing 3-D wave calculations with a spatial resolu-

tion that is comparable to conventional 2-D calculations.

Such a computing capability would most certainly
prove to be a valuable asset in numerous ground motion
studies. The Lagrangian stress wave codec that is being de-
veloped on the ILLIAC, referred to as SWIS (Stress Waves In
Solids), is expected to have important applications for

simulating seismic phenomena such as:

e Ixplosions in prestressed and geologically
complex formations.

e Spontaneous earthquake ruptures and near-field
ground motions,

e Stress waves passing through laterally varying

carth models,

e Stress waves impinging on buried and surface

structures.

This 3-D simulation capability is expected to play an impor-
tant role in the Advanced Rescarch Projects Agency's (ARPA)

program to discriminate earthquakes from explosions and the

Defense Nuclear Agency's (DNA) investigations on the vul-

nerability c¢f buried structures to incoming stress waves.

In order to simulate the seismic phenomena itemized
above in threce spatial dimensions, the capability must exist
for handling very large grids. It is our opinion that, with
the advent of super computers such as the ILLIAC IV and
highly sophisticated numerical computing algorithms, detailed
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3-D wave calculations are now feasible. Based on predicted
computing speeds for the ILLIAC, we have estimated that it

is theoretically feasible to process wave calculations at

the rate of 0.10 m-sec of computer time per numerical time
step per 3-D element. This amounts to 10 secs of computer
time per numerical time step for a 3-D grid containing 100-
thousand elements {e.g., a 50 by 50 by 40 grid). This com-
puting rate is nearly comparable to that achieved in 2-D
wave calculations for an equivalent 50 by 50 grid using a
conventional serial computer, e.g., a UNIVAC 1108.

Numerically processing wave calculations in 3-D grids
with more than 100-thousand elements involves an enormous
number of calculations. More than one billion floating point
multiply and add operations can arise from a single computer
simulation. Clearly, considerations of computing efficiency
become extremely important in designing and implementing such
a computing scheme. Also, the usefulness of such a code, once
it is finalized, will depend on its flexibility for handling
a range of geometric configurations, boundary conditions,
material types, etc,.

In an effort to arrive at an optimum computing scheme,
we have carefully reviewed existing numerical computing tech-
niques, both finite element and finite difference, in order
to combine strong points from each method into a single algo-
rithm in a form that is suited for parallel processing on the
ILLIAC. In so doing we have conceived a hybrid scheme that
employs the finite element method for spatial discretization
(employing spatial interpolation functions and a virtual
work expression) and follows a computing sequence that
resembles Lagrangian finite difference schemes; the consti-
tutive properties of the material appear in an isolated
module of the code so that the nonlinear flow rule can easily
be altered. In addition, the SWIS code, which employs the
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hybrid algorithm, contains some advanced features that will

enhance its usefulness in particular applications:

¢ The code operates, with no loss of efficiency,
in one-, two-, or three-spatial dimensions.

¢ The ccde contains a flexible grid generator
which can be superseded in local portions of

the grid.

e The calculations are performed in orthogonal

curvilinear coordinates.

e The code has a provision for effectively sup-

pressing wave reflections at grid boundaries.

A detailed description of the SWIS computing scheme is pre-

sented in Section II of this report.

During the early stages of code development, the
ILLIAC IV was not operational. The first successful program
execution on the array took place in March, 1973. Because
no I/0 facilities were available at this time, computed re-
sults had to be extracted from core dumps. A linearized
version of SWIS (described in Section 3.2 of this report)
first became operational on the array in July, 1973, A
number of plane-wave calculations were performed at this
time to test various features of the linear SWIS code, e.g.,
artificial damping and transmitting boundary conditions.
One calculation was performed which involved 10,000 time
steps in an effort to test the stability of the current
ILLIAC configuration and to obtain estimatec of computing

rates.

Following the initial success with the linearized

version of SWIS, ILLIAC program development for the more
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involved nonlinear SWIS code was begun in September. As
the result of improvements in the ILLIAC computing system
and our earlier experiences in implementation on the sys-
tem, this code development work progressed rapidly. The
nonlinear SWIS became operational for 1-D geometries in
late November, and, during the month of December, both 2-D
and 3-D wave calculations were performed on the ILLIAC.
Based on the central system clock times, we estimate that
the general SWIS code is processing wave calculations at
the rate of 1.2 m-sec of computer time per numerical time
step per 3-D element. The entire code is programmed in
GLYPNIR, and, although nearly all of the calculations are
carried out in parallel, no effort has been made to opti-
mize the resulting machine code. Also, we note that the
ILLIAC should ultimately process calculations much faster
than in its present configuration; perhaps a factor of
three or four will be realized from software (overlapping
machine instructions) and hardware improvements that are
being considered. Thus, we are anticipating somewhat faster
computing rates in the future. Our goal has been set at
0.10 m-sec of ILLIAC time per numerical time step per 3-D

element.
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IT. NUMERICAL ALGORITHM

2.1 INTRODUCTION

The numerical algorithm that has been designed for
the SWIS code contains features of both finite element and
finite difference methods. In many respects, it is like a
finite element method in that the continuum is discretized
using spatial interpolation functions and a virtual work
principle, but the computing sequence is modeled after
Lagrangian finite difference shock codes. Figure 2.1 illus-
trates how three distinct steps in a Lagrangian finite
difference code, one of which involves the constitutive
properties, are combined into one step in the conventional
finite element method through the use of a stiffness matrix.
The SWIS code does not develop the finite element stiffness
matrix but rather directly computes strain rate, stress, and

restoring forces.

2.2 PROBLEM INITIALIZATION

The following quantities are needed to pose the stress
wave calculation:

1. Coordinate System Designation

a. Number of spatial dimensions to appear in
the numerical grid.

b. Orthogonal curvilinear coordinate system to
be employed in the calculations. Transforma-
tion metrics are provided internally for

operating in Cartesian, spherical, and cylind-

rical coordinate systems.
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Grid Configuration

lost grids can be produced using a flexible code-
contained grid generator; liowever, a provision is
made for superseding the grid generator in local
regions. The grid configuration is described by:

a. Spatial location of the node points, and

b. Node map to associate nodes with elements.

Boundary Conditions and Applied Forces

No distinction is made between internal nodes
and boundary nodes in that each directional
component of each node point is assigned one

of the following three constraint conditions:

a. Unconstrained with applied body force or
surface traction to form an array of
nodal forces.

b. Const ained with nodal displacement com-
ponents constrained to follow a specified

time history (moving or stationary).

c. Transparent with a boundary disguised to
reflect almost no incident wave energy.

Material Properties

Each element is associated with a material
described by

a. Density.

b. Constitutive properties, i.e., properties
for developing stress rate as a function
of strain rate and stress.

c. Dimensionless coefficient for regulating
the damping of spurious high frequency
numerical oscillations.

11
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Time Stepping Data

a. Starting time and final time.
b. Time step At.

Starting Conditions

a. Velocity and displacement with respect
to some reference frame.

b. Stress at the centroid of each element.

Presentation of Results

a. Element and node numbers for which re-
sults are to be printed at designated
time intervals.

b. Printer plots for displaying results at

designated time intervals.

c. Time histories of individual node points.

d. Plot files producing graphical displays

of the computed results.

Default conditions and data generation schemes are
used where possible to minimize the quantity of data that
1s needed to describe a problenm.

12




2.3 SPATIAL DISCRETIZATION

A spatial region is discretized by subdividing its
volume V into a total of E elements, illustrated in
Fig. 2.2. The displacement field, ui(g,t), throughout V,
is interpolated from spatially sampled displacements ui(gn’t)
where Sn’ n=1, 2, ... N, are isolated node points which
are positioned at juncture points along element boundaries;

N is the total number of node points in the numerical grid.
The spatial interpolation is achieved using piecewise smooth
interpolation functions pn(§) so that

N

B (6T = Db () up (X, t) (2.1) |

n=1 3

|

in which :
pn(l‘m) - 6nm

Spatial derivatives of the displacement field are then ex-
pressed in terms of nodal displacement
differentiation of Eq. (2.1).

by the appropriate

:

du. N ap 3

L (x t)=§ —~1 (x) X ,t .

7 7%, X u; (X,t) (2.2) |
n=1

2.3.1 Orthogonal Curvilinear Coordinates

Curvilinear coordinates are often better suited for
particular applications than Cartesian; notably, cylindrical
and spherical coordinates are well suited for explosion cal-
Culations. The capability to operate in spherical (or
spheroidal) coordinates also has value for applications in .
global seismology. In order to accomodate applications | *




x Cartesian Coordinates

y Orthogonal Curvilinear
(Sphericual) Coordinates

i Natural Element Co-
ordinates

23
4 v 2
2
: ? 1z, = (1,1f1)
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"1;_'12
6 ,k_
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N 6
5
Typical Element with 7 —

5
Local Node Numbers

Cubic Element in Natural
Element Coordinates

Fig. 2.2--Three-dimensional grid illustrating coordinate
systems.
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which can benefit from the use of a particular coordinate
system, the SWIS code has been developed to operate in general
orthogonal curvilinear coordinates designated y (we reserve
the notation x for Cartesian systems). A brief development

-~

of how this is accomplished is presented below.

Consider the point P with Cartesian coordinates X
and curvilinear coordinates y. We define a local Cartesian
system, 5; with its origin centered at P. Each component
of x{ is measured in the direction tangent to the respective

curvilinear component y; at point P, illustrated in Fig. 2.3

P T B -l T, TR W T v T NN g L T N L T N T NP R e e

The metric coefficients for the orthogonal curvilinear system
y are given by

X <
i

hy = Y (1) (2.3)

where the brackets enclosing the subscript indicate that
the summation convention does not apply to that particular
subscript. Table I contains metric coefficients and their
curvilinear spatial derivatives for some of the more common
orthogonal curvilinear coordinate systems.

When a scalar field, e.g., density = p(y,t), is
differentiated, the curvature in the vy system adds no
complications, and we simply have

3p  _ ayk ap 1 3p

ax5 axj ayk h(j) ayj

: (2.4)

However, when a vector field, e.g., displacement = ui(z,t),

is differentiated, curvature in the Y system gives rise to
additional terms which are developed in elementary texts on ]
tensor calculus, see Spain (1960) or Washizu (1968). For ;

the special case of orthogonal curvilinear systems we write

15 4




Fig. 2.3--Local Car*esian coordinate system centered
at the point P.
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. §. oh, . 8. . oh,.
Dijx = }flk e R Jlﬁ sl + moh . (2.6)
H ) 75 hHhwy Yy (1)) k
Spatial derivatives of the discretized displacement
field
N
u; (y,t) = Z Pp(y)ui (Y ,t) (2.7)
n=1
are conveniently expressed using the operator Dijk:
Bui iy
—— (18 = D Dy pa () (Y, (2.8)
J n=1
When y denotes a Cartesian system (i.e., y = x and
= 15 [
hi = 1), we note that Dijk reduces to Gik P and
Eq. (2.8) reduces to our earlier expression, Eq? N, 2
Strain, in the curvilinear, discretized space, is
also conveniently expressed using the spatial operation
1 Bui 1 au .
Eij(X’t) = s (Z’t) ks '2' _"L (}’,t)
9X ox: ~
J J
= 7 (Dyip * Doy (v, t)
2 YUijk jik’ "k'L?
N
= 1 -
=7 Z (Dijx * Dyip)Ppy (Iup (Y, 1) (2.9)
n=1
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Because the grid deforms with the medium in a Layrangian ‘
formulation, we retain only the first order terms. b

2.3.2 Inner-Llement Interpolation

S S A

In the SWIS coce, as in conventional finite element .
computer codes, spatia’ interpolation is defined element by §
element. Localized interpolation functions, which depend
only on the geometry of a single element, characterize the
spatial variations within the element so that

Ph(Y) = pp(y)

for y in V® or on $® where V¢ and S® denote the
volume and the boundary surface of element e, respectively.

The result is that ui(z,t) in Eq. (2.7) depends only on the
displacement of the node points bordering element e when

Y 1is interior to or on the boundary of element e. A brief
development of how interpolation functions are expressed

for skewed element geometries is presented below.

Let us consider a local element transformation that
serves to map skewed elements into a standard geometry,
namely, a two-unit line segment in 1-D, a two-unit square in
2-D, and a two-unit cube in 3-D. We de signate this natural
. element coordinate system z, illustra.ed for 3-D, in Fig., 2.2.
The interpolation functions for a low order 3-D element are then
expressed in the natural system as
pm(f) - é (1 + 21‘7‘1m)(1 ¥ zzzZm)(1 ¥ zngm)
in which m = 1, 2, ... 8 denotes the local node number for
the element, illustrated in Fig. 2.2, and Zim = + 1 denotes

the iE—}l coordinate value for node m. The more general ex-

pression that applies in D-dimensional space is written
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D
1 il
Pp(2) = g z:g (1 + 2325, - (2.10)

Spatial derivatives of the element interpolation functions
are obtained directly from Eq. (2.10) to yield

D

; op. (z) Z.
i £
; T Z%m ﬂ (1 + z;Z;3p) - CAED)
é ] i=1
] i#j

Interpolation functions for higher order elements are easily

v developed in the natural coordinate geometry, see for example,

Frazier, et al., 1973.

We note that the interpolation functions expressed
in natural element coordinates =z can be used directly for
interpolating field variables within an element, e.g.,

2D

ug(z,t) = D (2 (B, 1) - (2.12)

m=1

= In addition, the same interpolation functions serve to
express the mapping from natural element coordinates z to

~

the global curvilinear coordinates Y, 1y JEFtR,

5D
yi(2) = Z p ()Y, (2111839
m=1
and
5D
9y (2) ap,_(2)
a_z—j— =Z 32 . Tt (2.14)
m=1 J

20
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where Yim denotes the iE-}l coordinate value of local node
number m. Spatial derivatives of the interpolation
functions with respect to global coordinates, Eqs. (2.2) and
(2.8) then become

1]
Pn _ (if_i_) P
ay. Qaz. z.
i %5 9z

so that the derivative of the interpolated displacement field,

Eq. (2.12), with respect to y 1is computed using the expression

du, ay. \ "1 Ziy ap
W%—(g,t) = (a_zl) Z 5% (2) u;(z ,t) . (2.15)
] X m=1
21
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2.4 NOTATIONAL CONVENTION

The notation that has been adopted for the various

spatial coordinate systems is illustrated in Figs. 2.2 and 2.3:

E
:
sv
]
E
E
1

X — global Certesian coordinates.
Yy — global orthogonal curvilinear coordinates. f
5’ — local Cartesian coordinates aligned with the
curvilinear system at the point x~ = 0,
z — natural element coordinates.
Capital symbols én’ Xn’ and gn are used to denote the

spatial coordinate of a node point.

As illustrated by Eqs. (2.8) and (2.9), spatial deriva-
tives in the various coordinate systems merely involve mani-
pulations on the element interpolation functions. Subroutines
handle these transformations in such a way as to minimize
complications in the primary logic of the SWIS code. At the
same time care has been taken to assure that excess calcula-

tions do not occur when employing a simple Cartesian system,

In the subsequent presentation, matrix notation will
be used in preference to subscript notation for denoting
arrays that arise from spatial discretization. This enables
us to keep directional indices (subscript notation) separate
from nodal indices (matrix notation). For convenience, all
matrices are of order N, the total number of node points in
the grid; and the symbols < >, { }, [ 1, and ["] are used
to denote a row, column, square, and diagonal matrix, re-
spectively. Using this notation, Eq. (2.7) becomes

u; (7,t) = <p(y)> (U (8)) (2.16)

and the local Cartesian derivative of the spatially discre-
tized displacement field is expressed




A e S

ou.
'gx—;r (st = <Di5p(y)> (U (1)} . (2.17)

Note that we have used upper case to denote nodal displacement

(a nodal subscript replacing the spatial argument), i.e.,
Uin(t) = ui(Xn,t) (2.18)
or

{Ui(t)} = ui(zn,t) g B 15 2n amw N

Finally, with regard to notation, we point out that
the global arrays <p(z)> and <Dijkp(x)> are never actually
developed in the computing algorithm, but rather spatial
interpolations are dealt with element by element. An array

that is localized to a single element is denoted by a super-
scripted e, thus

E
<p(y)> = Z <pe()~')>
e=1
and
E
<Dijkp(x)> = :z: <Dijkpe(x)> .
e=1

E being the total number of elements in the global assemblage,
Using this notation, pi(y) is zero unless node n is associa-

ted with element e and Yy lies within or on the boundary
of element e,
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2.5 (CONSERVATION OF MOMENTUM

Conservation of momentum in a Lagrangian framework

can be expressed by the virtual work expression

f (piiidui * oy :—;li - ?iaui) dv -/?.lauids =0 (2.19)
v ] S,
in which us is the particle displacement, dui is a virtual
displacement, ﬁi is parEicle acceleration, 0. is stress,
p is mass density, and fi and ?i are specified body force
and surface traction, respectively. S0 is that portion of
surface (internal or external) bounding the volume V to
which tractions are applied. For general orthogonal curvi-
linear coordinates, the term adui/axf is taken to be
Di.kduk , the operator Dijk having been defined above in
Eq. (2.6). For a Cartesian system, the term simply becomes
adui/axj.

In the spatially discrete system conservation of
momentum is expressed by substituting the interpolated dis- l
placement field from Eq. (2.16) into the virtual work expres-

sion above to obtain
s T .
(6U, 3 ([MI{UL ) * R} + {Q) - (F;}) = 0 (2.20)

where
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E
= e T
{Ri} = Z / cjk<Djkip> dv
e
e=l V
E
= e T
Q) = Z 315 Py > 4
e=l V

in which E 1is the total number of elements in the grid and
B is the number of element surfaces with applied tractions.
An artificial stress qij = qij(é) has been introduced for
the purpose of damping spurious high frequency numerical

oscillations.

The zero matrix is the only vector orthogonal to all
possible (unconstrained) virtual displacements {GUi}, there-
fore Eq. (2.19) yields a series of simultaneous equations ex-
pressing conservation of momentum node by node:

MU (6)} + (R (8)) + {Q;(8)) = (F, ()} . (2.21)

In contrast to conventional finite difference methods, free
surfaces and loaded surfaces are "automatically" provided for
in the above equations of motion through the forcing term
{Fi(t)}. Node points with a specified displacement time
history and node points along a transmitting boundary are not
automatically handled by the virtual work expression, and
therefore, these constrained node points require special
considerations. For convenience, we have simply modified the
definition of the forcing term at the constrained node points so
that Eq. (2.21) applies, without exception, to all points in
the grid. The modified prescription for Fin(t) suited for

the constraint condition at node n is given below in Egs.
(2.30) and (2.31).
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In contrast to the conventional finite element method,

we note that the constitutive properties have not been ap-

Plied in the development of Eq. (2.21). The load-deformation

properties of the material are introduced below at an inter-
mediate stage in the time stepping scheme.

2.6 TIME STEPPING SCHEME

In selecting a time stepping scheme, we have con-
sidered the relative merits of explicit and implicit methods.
In order to achieve satisfactory accuracy in the propagation
of sharp wave fronts (wave length equal to 10 to 15 grid
dimensions), a small time step is needed, roughly equal to
that required for stability of an explicit method. When a
numerical calculation involves such small time steps, ex-
plicit methods are strongly favored over implicit methods,
Explicit methods generally require many times fewer opera-
tions per time step. The number of multiply and add opera-
tions for the implicit schemes used in finite element codes,
such as SAP, increases as N5/3 for cube-like blocks of 3-D
meida; whereas for explicit methods the number of operations
increases linearly with N, N being the total number of
node points in the numerical grid. Furthermore, algorithms
based on explicit methods are simpler to program and general-
ly more flexible for introducing nonlinear material response
behaviors. The simplicity of our explicit wave calculation
scheme has made it possible to develop a very efficient

parallel algorithm for processing linear seismic waves on
the ILLIAC IV computer,
Stress, ogj(z , t-4t), e = 1,2, ... E; velocity,

|

lﬁi(t - %3):; displacement, {Ui(t)}; and node positions,
{Yi(t)}, are advanced in time by At wusing a four stage
computing sequence.

i e | i L oA




Stage 1: Strain Rate

Compute strain vate for element e

au. 3

e ae) o1 2% ot} 1Y _ At
En(X't' 7’)’ zaxj(X’t 2 )+ zaxi(X’t z)
nl : eryy> 10 (¢ - AE)!
7 <DygP () *+ Dyyp ()2 Oy (e - 3 )i
(2.22)
where €. y,t - AE) is the strain rate evaluated at a dis-

ij\~ 2
crete point within element e (strategic points in v® for

evaluating the {R;} integral of Eq. (2.20) which may, under
special conditions, be confined to the centroid point ?e).
That is, the terms <Dijkpe(z)> are evaluated at the inte-

gration points for element e.

Stage 2: Stress Rate and Stress

Compute stress rate for element e

Bl e T ——

ag.(x,t . %E) = f(ée, ge) (2.23)

~ ~

which, for linear isotropic material, becomes

se NEY _ e e _ At e ce . B8
Oij(X’t - 7—) = 2y Eij(Z’t > ) + A Gij tkk(z’t > )

TR AR An T TR e L

-

(2.24) :

1

where u°® and A€ are Lamé's elastic constants for the i
material in element e. The stress at the advanced time

is then computed by direct integration 4

0. (y,t) = o5.(y, t-at) + At oS.ly,t - éf—) (2.25) !

ijt=? ij~4? ij\%? 2 d j

1

Compute artificial stress qij which serves to damp ;

spurious high frequency numerical oscillations
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e ) nF e+ - _é_l_:_ ,
qij(Z’t) = At B Oij<Z’t > ) (2.26) |

where 8% = 0.15 is a dimensionless damping coefficient., For
the special case of linear waves (linear material and small

displacements) the damping provided by the above expression
for qij,
damping of each natural mode of vibration (i.e., each eigen-

with £ uniform between elements, results in the

function of the linear system) as the square of the corres-

ponding natural frequency (Frazier, et al., 1973). Also, we

note that no damping occurs in regions of stationary stress.
The isotropic component, qik, is equivalent to linear damp-
ing used in Lagrangian finite difference shock codes, see

for example, Richtmyer and Morton, 1967.

Stage 3: Restoring Forces (equivalent to stress gradients)

Compute the nodal restoring forces that result from

stresses in element e

(R(t) + Qf(1)} = f

T
<Djk'p(X)> (O]?]C(X’t)
Ve

1

+ q?k(z,t)> dv . (2.27)

In many applications, a single integration point at the centroid
of the element is sufficient for evaluating the integral., How-
ever, for cases in which the strain energy that is neglected by
sampling only at the centroid becomes significant, stress is
computed (Stages 1 and 2) at two points for each spatial dimen-
sion of the element, and in this way the spatial variations
within an element are treated in the integration above. Further
discussion on the treatment of inner element variations in
stress is presented in Appendix A. As an incidental note,
Frazier, et al., 1973, have shown that for rectilinear 3-D
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grids, a one-point integration procedure is equivalent to the
cell-centered-stress finite difference method that is commonly
used in Lagrangian shock codes.

The integration above is performed for each element to

obtain the restoring force of the medium on all the nodes in
the grid

E
(Ri(t) + Q ()} = D (RE(1) + Q%(0)1 . (2.28)
e~

Actually, the global arrays {Ri(t)} and {Qi(t)} are not
stored, but rather the effects of the element restoring forces

are directly accumulated in the nodal acceleration calculations
developed in Stage 4,

Stage 4: Motion of the Node Points

Nodal accelerations are computed directly from Eq. (2.21)

W, (t)} = [ﬁ]"’{pi(t)} - [ﬁ]“{Ri(t) + Q. (1) (2.29)

where the so-called lumped mass matrix [&] is obtained by
replacing each diagonal term in the distributed mass matrix
(M] by the sum of the terms in the row in which it appears.,
This operation yields a diagonal mass matrix thereby making
the inversion of the mass matrix in Eq. (2.29) trivial.

Equation (2.29) directly applies to all unconstrained
internal and boundary nodes, including internal nodes with
applied body forces and boundary nodes with applied tractions
(zero or otherwise)., A modified prescription for Fin(t)
is used at constrained node points so that Eq. (2.29) is uni-
versally applicable to all node points in the grid.
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The SWIS code accommodates two types of constraint
conditions: The first type involves a constrained component
of displacement in which displacement is made to follow a
prescribed time history ﬁi(zn,t). This condition is
satisfied with

~

M
- nn —
Fin(®) = Rip(8) + @ (6) + 2T, (1,0 + at)
M M
nn nn - At
) At 2 Uin(t) At Uin(t "B ) (2 50)

where n denotes the node number.

The second type of node constraint involves a trans-
parent boundary condition in which a boundary point is made

to reflect almost no energy. In this case the nodal forcing
term is set to

~

M
_ 1 1 nn ¢ At
Fin() = 7 Rin(8) + 7 Q4 (0) - 3% Uin(t ) 7“) (2.31)

Nodal velocities at the advanced time t + At/2 are

computed by direct (numerical) integration of the nodal ac-
celerations

[

‘Oi(t +

1

and similarly, the nodal displacements are advanced in time

l\)l

t)f - :Oi(t - %3); + At%ﬁi(t)} (2.32)

{Ui(t + At) )} = {Ui(t)} + At-}fli (t + %i)f (2.33)
and
(Y (t + 8t)) = (Y, (£)] + At[ljl(i)]-l{fli(t + %E)} (2.34)
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where [H(i)] is a diagonal listing oi the '15-}l metric co-
efficient for each node in the grid. CLquations (2.32), (2.33),
and (2.34) are employed for all node points in the grid; no
exception is made at this point for the calculations at con-
strained nodes.

The sequence of calculations outlined in the four
stages above yields the necessary variables for continuing
into the subsequent time step, i.e., set t = t + At and re-
turn to Stage 1. Approximately 500 floating point multiply
and add operations are required per 3-D element to advance
the solution one time step using Cartesian coordinates and
a one-point integration scheme in Stage 3. To put this
number is perspective we note that roughly one-half of this
effort would be required per node to multiply the non-zero
terms in a 3-D finite element stiffness matrix by the nodal
displacements (about 250 floating point multiply and add
operations). Thus, the algorithm developed above should be
exceedingly fast for both linear and nonlinear stress wave
calculations. This conjecture is supported by ILLIAC test

calculations, some of which are presented in Section IV,
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2.7 CONSERVATION OF ENERGY

Kinetic energy, strain energy, dissipated energy
(artificial viscosity), and load potential are computed at

each time step based on the expressions:

K(t) = kinetic energy at time t
T
1 At
i _2.: = T); o bu, v - 7—); (2.35)
S(t) = strain energy (internal energy) at time t
= S(t-At) + At S(t : %‘i)
T
- e Aty (o . A\l .
- S(t-At) + 7—-lui(t -2-—)‘ lRi(t) * Ry(e-at) (2.36)
D(t) = dissipated energy at time t resulting from
artificial viscosity
= D(t-At) + At 1')(1: g 52\1)
T
_ S O AT |
= D(t-At) + > (Ui(t 7—)’ IQl(t) * Q4 (t- At)‘
2 D(t-at) + At ‘1’1( - 7-))T ‘Q (t)' (2.37)
[ I e g
L(t) = load potential (energy entering cr leaving

the system through the boundaries or through
the action of body forces) at time t result-
ing from body forces and surface tractions
(Eq. (2.20)), specified displacement time
history (Eq. (2.30)), and transmitting bound-

aries (Eq. (2.31))
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L(t-At) + At i(t - é3)

T
L(t-at) + %E:ﬁ,(t - 7_)} ;F (t) + F. (t At)) (2.38)

We note that an approximate expression is employed for estimat-

ing dissipated energy D(t) in Eq. (2.37), because the array of
dissipation forces {Qi(t-At)} - BAt:Ri(t - E%E): y Wwhich is

needed for a consistent calculation, is not ret
at the advanced time t,.

ained in core

When SWIS is operated without artificial damping,
energy is conserved in the calculations, i.e.,

L(t) - K(t) - S(t) = 0 + computer round-off (2.39)

with D(t) = 0. Conservation of energy has been observed for
linear wave calculations. However, because the method has
been formulated from an energy principle, Eq. (2.39) will also
be satisfied for waves in nonlinear materials with D(t) = 0.

Energy conservation can be demonstrated directly from
the discrete equations of motion. The two discrete equa-
tions — Eq. (2.21), centered at time t, and Eq. (2.21),

centered at time t - At — are averaged to yield an equation
of motion at t - At/2

o [M];fli(t + é"—‘-‘) - Gi(t : iéi)’ + %;Ri

(t) + Ri(t-At)

]
. %:Q (t) + Q, (t- At); :F () + F, (t- At)f |
in which Eq. (2.32) has been enployed to replace {U (t)} and
{ﬁi(t-At)} by

L:ai(t + é—E) - U, (t - %3)

l
5

gt T e e
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1 4 AR _sat)l
E?j”i(t 2 ) Ui(t ‘7‘%
respectively. This expression is then pre-multiplied by nodal

velocities {ﬁi(t - At/Z)}T to obtain variations in energy oOver

the time step At
14
7lui(t

)}TERi(t) . Ri(t—At)t

'T

all

i é£>'T%Fi(t) . pi(t-At)%

;Qi(t) . Qi(t-At)t

2

5

Using the notation introduced in Egqs. (2.35) through (2.38) we

have

K(t) - K(t-at) + S(t) - S(t-at) + D(t) - D(t-4t) = L(t) - L(t-At)
(2.40)

Consequently, all of the energy in the system has been accounted
for; changes in load potential are reflected by changes in
kinetic energy, strain energy (interral energy), and dissipated
energy. Beginning at some initial time t0 with K(0) + S(0)
+ D(0) = L(0), Eq. (2.40) i: applied repetitively from t0 to

t to yield

K(t) + S(t) + D(t) = L(t)
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with no dependence on the constitutive properties. We note
that, for the case of a yielding material, not all of the
strain energy is recoverable. Thus we see that S(t) con-

tains both the recoverable strain energy and the internal
plastic work.

2.8 SPECIAL CASES: CARTESIAN COORDINATES, RECTILINEAR GRIDS,
AND TTNEAR MATERTALS

The preceding formulation for time stepping nonlinear
stress waves through 1-D, 2-D, and 3-D curvilinear geometries
may involve procedures not commonly found either in finite
element literature or finite difference literature. In an
effort to make the presentation more easily understood, some
special cases will be considered.

2.8.1 Cartesian Coordinates

The presentation of the computing scheme is complicated
somewhat by the inclusion of general orthogonal curvilinear
geometries, Therefore, we will summarize the time stepping
procedure using Cartesian coordinates. This not only removes
much of the abstractness from spatial derivatives in the
discrete system but also enables us to focus on the key opera-
tions that are involved in completing a time step.

As described above in Section 2.6, stresses, velocities,
displacements, and node positions are advanced in time using
a four stage computing sequence. Denoting parameter initiali-
zation as stage 0, the following operations are performed:

0. Initialize Values

1 . Vo e . )l e )
lXi(t) ] lUi(t)" lUi(t )‘, Oij ()_S’ t A5




1L Compute Strain Rate

e BT 3p° (x) . At
Eij(’f' 5 '2") = < o%; b Ui(t ) T)
o (X) | |
1 ~ . At
: .2.<_a_xl_.> i (t : T)f (2.42)
g Compute Stress Rate and Stress
'€ At _ X e\ ~ ere _ At ]
hife e ) - ol )7 oyl s - 4
e ce At
+ A 6ij€kk(§’ t - 7—)] (2.43)
0. (x,t) = 0%, (x, t- at) + At &%.(x, t - AL (2.44)
. i) Dy TR i3y ~’ 2 :
,_” 3 A
afy(x,t) = 8%t o‘i*j()f, t - 73) (2.45)
30 Compute Restoring Forces
| X T 3
‘Rf(t) + Qf(t)$ ; jf (- ) (oi-(§.t3 a
I Ve J J 1
—~ ‘ q‘i*j()f,t)) av (2.46)

Steps 1 and 2 are repeated for each integration point x

-~

located in element e, Steps 1, 2, and 3 are repeated ior
each element in the grid to yield

E

IHORENO D DR HOREHOY

e=1
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4. Compute Motion

%ﬁi(t)% = [ﬁ]'lﬁFi(t) - Ry (1) - Qi(t)% (2.47)
with

B

E
Fn(t)= Z/Tipidv+ Z/;)?ipgds

e=l V b=1 SU

e e e e e o mm  )

for the case in which X represent an unconstrained in-

ternal node or a boundary node with applied tractions (zero

or otherwise),

~

M

Py (8) = Ryp(6) + Qpu(e) + =55 (R, £+ 00

'
>
t

M
s At
S DBy (r) - 2R 0 (t-._) _
At2 At in 2 i
4
for the case in which Xn is driven by the specified time :
history ﬁi(gn, t), or ;

M

m 1 _ _nn _ At
B (5 = 3 Rin(t) i g Qin(t) 20t Uln(t 7] )

for the case in which X is positioned along a transmitting

boundary. .
‘1 (e + ‘é‘t‘)'g - t'i(t : %‘E)'g ; At{ﬁi(tﬂ (2.48) f
R I
{ (t o+ At)} - {xi(t)ls . At{ﬁi(t + g—t)§ . (2.50) |

Time is advanced by At, e is set to one, and program control i

is returned to stage 1.
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2.8.2 Rectilinear Grids

In general, the grid geometry will not be rectilinear.
As discussed in Section 2.2.2 and illustrated in Fig. 2.2,
elements that appear skewed in the global coordinate system
Y are mapped into local element coordinates Zz where each
element appears as a cube (or a square in 2-D). Simple poly-
nomial functions, Eq. (2.10), are then employed for inter-
polating spatial quantities over the interior of the element.
Spatial derivatives with respect to the local element coor-
dinate system are expressed in terms of derivatives of the
interpolation functions, Eq. (2.11). Because the polynomial
interpolation functions also express the transformation from
local element coordinates to global problem coordinates,
spatial derivatives of the interpolated field variables are
evaluated at a specified point (-1 < z; < +1) in an element

through simple manipulations on the interpolation-function
derivatives, Eq. (2.15).

The interpolation functions and their derivatives,
expressed in local element coordinates, are the same for
all elements in the grid. A subroutine has been constructed
for producing the values of these spatial functions at any
specified point -1 £ z; £ +*1. To proceed from these values
and compute the value of a discretized field variable or
its derivative at the specified point in the element merely
involves a few matrix op .rations; consequently, the spatial
differencing that is involved in the time stepping scheme,
Eqs. (2.22) and (2.27), has not been expressed explicitly in
the development. We do not concern ourselves with these de-
tails in actual code development. However, we will develop
the particular spatial schemes that arise in 3-D rectilinear
grids to indicate nature of the spatial discretization,
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For the special case of a Cartesian global coordinate

system, spatial interpolation in a skewed-brick 3-D element
1s expressed by

ui(z,t)

8
Y pece U,
m=1

- 5 (1+2 ) (1+z ) (1+2 U,
‘% (1-z ) (1+z ) (1+2 )US,
oz (1+z ) (1-2 ) (1+z )US,

fg (1-z ) (1-2 ) (1-2 )US,

where the second subscript on the nodal displacements denotes

a local node number as designated in Fig. 2.2. The coordinate

mapping from local element coordinates to global coordinates,

i.e., x; = xi(g), is obtained by replacing ui(z,t) and

U?m(t) in the above expression by xi(z) and X?m, respectively.

When we restrict the 3-D element to a rectilinear brick
geometry in which X, is parallel to z

i’ the coordinate
mapping reduces to

i

3

1

1 | 3
= 7. = ¢ e

i (2.51)

e o i sl e
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where

Ax® = (xe , X8 ,x® , or x© ) - (xe ,X¢ ,x® , or x© )
23 24 27 28

Ax® = (xe , X ,x® , or x© ) - (x° , X% ,x% , or x© )

31 32 33 3y 35 36 37 38
That is, Y? is the centroidal point and Ax(l) is the
element dimension in the direction Xy The transformation
Jacobian, given by Eq. (2.14), then becomes

iy _ W @
EP. A%y 943 (2.52)
and
axi -1 2
(377) = —— 8 (2.53)
) AX (1)

for the case of a simple brick element geometry.

We combine the spatial derivatives of the element
interpolation functions with the transformation Jacobian
above as indicated in Eq. (2.15) to obtain the spatial
derivatives of the discretized displacement field

8
u. IX. - p
— = _J —_}
axj azk :E: azk Z) U (Z ')

mn=
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In particular we obtain

au.

1 e e
40x° [(1+Zz)(1*23)(”11‘”iz)
1

(1-2 ) (1+z ) (U8,-u8,)
(1+z )(1-z ) (Uf-Ug)
(1-22)(1-23)(U§7-U§8)]

1
44x°
2

[(1+zl)(1+z3)(U§1-U§3)

(1-zl)(1+z3)(U§2-U§4)

(1+z )(1-z ) (uf¢-US,)

(1-zl)(1-z3)(U§6-U§8)}

1
4Ax°®
3

Bl+zl)(l+zz)(U§1-U§5)
(1-zl)(1+z2)(U§2-U§6)
(1vz ) (1-2 ) (U 5-U5,)

(1-z )12 ) (U, - Uieﬂ

41
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At the element center, z = 0, we obtain the familiar
difference equation

u.
iy o 1 e e e e _ e
ET e Uip * Ujs * Ujg + Ujy - Ug,
i 4Axl
1T - S 2.55
Uig - USe - Ulg) (L)

Similar expressions are obtained for (Bu /3x ) and
(au /3x ) at the centroid of the brick- shaped element.

2.8.3 Linear Materials

An important class of problems that involve small
amplitude seismic waves can be treated using a linearly
elastic material model. We express linear material behavior
in the stress-strain relationship

%15 T Cijkefke
for the general case of anisotropic and heterogeneous
media. With this restriction, Stages 1, 2 and 3 (Egs. (2.22)
through (2.28)) combine to yield

Ry (1)} = [K; 51U, () (2.56)
and
fQ; (t)} = sat[k, ]{U (t)} (2.57)
where
I
ij Z / }<21p > “xemn <Dmnjpe> dv (2.58)

e= B
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in which the indices i, j, k, 2, m, and n vary from one
through the number of spatial dimensions. By restricting the

development to Cartesian coordinates, the expression for the

stiffness matrix can be reduced somewhat

N\ ap®
. <8xk> Cikjs <8x2> dv (2.59)
v

The equation of motion for the discrete system,
Eq. (2.21), then becomes

§Ui € - %3):+ [K;514U; (£)) = {F; (1))

. _ 1
[hij] -

E
e=1

[M]{Gi(t)} + BAL[K, ]

(2.60)

and the resulting time stepping algorithm (Stages 1, 2, 3
and 4) is expressed in a single equation,

(Uj (tat)} = at2(M)7HF, (1)) + 2{U (1)}
~.-1
Uy (e-at)d - e M) [K;51{(1+8)U; (1)
- BUj(t-At)}

The linear SWIS code, which is described in Section 3.2,
is based on this linearized time stepping procedure.

43

- s Al i ks . . Eak i
0 r - et e BRI TR U 2k e gt el i 4 e " e AT L. ey
Lo st AT AR ol e o i e i e e B Ll & E TN Y T T e o Ty e ¥ Ll




IIT. TILLIAC CODES: DESIGN AND DEVELOPMENT
3.1 OVERVIEW

In order to implement a numerical code on the ILLIAC IV,

two unique aspects of the machine require special consideration.
The first is its parallel architecture. In designing a stress
wave code, our approach has been to formulate numerical opera-
tions particularly suited to the parallel nature of the machine
rather than to adapt an existing code with numerics designed

] for a conventional serial computer. The resulting algorithm

: proved relatively easy to write and debug on the ILLIAC.

The second aspect to be dealt with is the method of in-
put and output. As the normal access is via the ARPANET over
large geographical distances, we must use new procedures in
program development and debugging. Program source and input
data must be delivered to the machine by teletype or by file

transfer from another host computer on the Net. Output must

return again via teletype or by file transfer to a host with
line printers. Even with the availability of printer output,
interpreting the results from large 3-D numerical simulations,

for example, can be exceedingly tedious without facilities
for graphical display.

Our first attempt at running programs in this environ-
ment occurred in March 1973. At that time, the only services '
available at the ILLIAC IV host were text editing and a !
minimal mechanism for ILLIAC program submission. It took ?
nearly one month to get results from our first run. The re-

sults were contained in a memory dump listing which was re-
ceived by mail.

Since then, the capabilities of the ILLIAC system have
evolved rapidly. The ARPANET File Transfer Protocol allows

us to transfer programs from UCSD to Sunnyvale and obtain ;
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line printer listings of ILLIAC dump files. With UCSD only
a few miles from S*®, we can obtain substantial output from an
ILLIAC run only an hour after program completion on the
ILLIAC. The display software enables an ILLIAC program to
output selected quantities under program control. This
eliminates the tedious task of searching memory dumps for
computed results. Since September 1973, the ILLIAC instal-
lation has maintained a job turn-around of roughly once or
twice a day for two weeks out of every month. With new ser-
vices and improved job turn-around, the ease of getting work
dotie has improved enormously.

S%'s first ILLIAC code, a linearized version of SWIS,
became operational in July 1973, and has been exercised on
several modest problems. A more general nonlinear version
of SWIS, presently about 1200 lines of GLYPNIR coding in
size, is now in the testing stage. As a result of improved
job turn-around, this new SWIS code has progressed from de-
sign stage to successful test runs in slightly less than
three months. During that period, ILLIAC reliability was
sufficient to debug the new code directly on the machine
rather than simulate the ILLIAC with SSK as was often neces-
sary before September. We estimate that our recent code
design and debug rate on the ILLIAC has been nearly 50 per-
cent of the rate at which we could have developed comparable

code on S°'s 1108 computer. We estimate that roughly half

of the ILLIAC development is spent communicating with the
ILLIAC host site via an interactive terminal.

In conclusion, we have had satisfactory results from
our first attempts to use the ILLIAC IV. Part of this suc-
cess stems from careful selection of the algorithms we first
tried to implement. Code development progressed relatively
smoothly, though was inhibited somewhat by the effort of
interactive communication with the ILLIAC facility. Further




attention must be given to the difficulties of handling
large quantities of output before major calculation can

be performed.

3.2 LINEAR STRESS WAVE CODE

3.2.1 General Description

The goal in our ILLIAC code development effort has
been to numerically simulate stress waves in 3-D geologic
materials. The first step in attaining this goal was to
develop a time stepping algorithm for propagating small
amplitude waves in linear materials. The linear algorithm
is formulated in Section 2.8.3; the algorithm is expressed
by Eq. (2.61). In limiting our attention to linear material,
we were able to construct a compact, yet versatile, code
that eased our first efforts to use the ILLIAC IV.

The algorithm accommodates nonsystematic node number-
ing of 1-D, 2-D, or 3-D numerical grids. As there is no
relationship between grid numbering and the number of PE's
(processing elements) in the array, very irregular grids
consisting of beams, plates, and so forth, may be analyzed.
Furthermore, the alg.rithm is as efficient for irregular
grids as it is for systematic grids. This is accomplished
by a work-ahead procedure in which PE's simultaneously com-
pute contributions to the advanced displacements of several
different nodes. A serial machine requires 261 floating
point multiply and add operations to obtain a nodal displace-
ment at the advanced time step in a 3-D grid (Eq. (2.61)).
The ILLIAC algorithm performs an average of 4 parallel
floating point operations plus 3 row sums for each advanced
nodal displacement. Thus, only a small overhead has been

added to accommodate the parallel operations.
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Based on predicted computing rates for the ILLIAC,
it appears that a carefully coded version of the linear
time stepping algorithm should run I/0 bound on the array.
This would require a processing rate of roughly 0.4 seconds
per time step for a 10,000 node 3-D grid. Accurate timings
are not available for the present operational version of
the linear code (programmed in GLYPNIR). However, it apnears
that our present computing rates are considerably slower
than the theoretical rate noted above.

3.2.2 Numerical Problem Definition

The definition of a complex grid can require u large
amount of data. In the most general case, the definition
must include data for individually locating each node and
some information about the interconnectivity of the element
in the grid. In addition, inhomogeneous material properties
must be specified element by element throughout the grid.

In all, about 17N data items are required to completely
describe a totally arbitrary N-node 3-D grid. Such a re-
quirement would make 3-D grids excessively tedious to set
up.

In order to make the linear version of SWIS as flex-
ible as possible and not tie it down to any particular grid
generation scheme or finite element scheme, the influence
coefficients for the grid are gencrated separately and be-
come data for the time stepping algorithm. One limitation
of this approach is that the algorithm can compute stress
waves only in materials with linear stress-strain laws,
since no provision is made for recomputing the influence
coefficients during the time stepping. However, since the
grid need only be generated once, one may employ as sophis-
ticated a grid generation scheme as desired involving curved
grids or structural appendages, with no effect on the
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efficiency and speed of the time stepping algorithm.

In the present code configuration, spatial discre-
tization is carried out on a serial computer using a con-
ventional finite element code. This step produces the
terms {Fi(t)}, [&], and [Kij] of Eq. (2.61). These terms
are then sorted by the serial machine program into the
order required by the ILLIAC time stepping scheme. A sort
algorithm has been designed to perform this sort on the
ILLIAC (Frazier, et al., 1973), but has not been implemented
as our recent work has turned to implementation of the non-
linear version of SWIS (described in Section 3.3).

At each time step, Eq. (2.61) is processed. It has
the form

Weran)) = (v(e)d + [A] (wi(e)) (3.1)

W)} = @B W) - Blu(t-ot)) (3.2)
(V(t)} = at* (M7 {F(eI} + 2(U(0)} - {U(t-0t)) (3.3)
[A] = -at2[M] 7" K] (3.4)

Underscores are used here in Place of directional component

subscripts 1 and j. Using nodal subscripts, Eq. (3.1) be-
comes

d,..
Up(Er88) = Vo (e) + D0 A, Whce) (3.5)
m

The terms Un’ Yn’ Ug, and Fn correspond to node n in

the numerical grid and each represents 3 floating point num-
bers on the computer for a 3-D grid. Space is provided for

each vector by storing sequentially across PE's. For example,

-




the 64th term of {U(t)}, corresponding to the displacement of
the 64th node point in the grid, falls into PE 63 (Fig. 3.1).

The vectors wrap around in core so that U appears in PE C.

~65
In general, vector term n appears in PEk where k is the

rei:ainder of dividing n-1 by 64. In the present version of
linear SWIS, these vectors are core contained. A three-
dimensional grid of N nodes would require 3N storage loca-
tions for each vector. With roughly 131K words of PE memory
available, the code is limited to 3-D problems containing no
nore than N = 10,000 nodes.

The matrix of influence coefficients, [A], is an
N x N matrix of 3 x 3 submatrices, or 3N x 3N. For a problem
of N = 10" nodes, the matrix would consume roughly 10° words
of storage. However, [A] is sparse with each row generally
containing no more than~27 non-zero 3 X 3 submatrices. This
1s a consequence of the connectivity in a 3-D grid of skewed
trick elements in which each interior node point is connected
directly to 26 neighbor nodes and each boundary node to less
than 26 neighbors. If the matrix is compressed to remove
zero submatrices, the storage is reduced to roughly: (number
of nodes in the grid) x (number of neighbors plus one) x
(words of storage for a submatrix) = 10* x 27 x 10 = 2.7 x 10°
words for N = 10". The extra word of storage for the 3 x 3
submatrix contains the row and column position of the sub-
matrix in the uncompressed matrix.

These submatrices are stored on the high speed disk in
an order appropriate for the sparse matrix multiply which is
performed repetitively during the time stepping. As illus-
trated in Fig. 3.2, the column number of the nonzero terms
in [é] provides the PE destination, i.e., énm is to appear
in PEk where k 1is the remainder of the division of m-1 by
64. This scheme assures that, as the influence coefficients

are read into PE memory from the I4 disk, each coefficient
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DESTINATION OF NODAL DISPLACEMENTS IN PE MEMORY

PEO PE1 PE2 PE62 PE63 PEO
| { | ' | '
U Uy U (/N . U
~1 ~2 ~3 ~63 ~64 ~65
DISPLACEMENTS IN PE MEMORY
PEO PE1 PE2 PE63
U U U U
~1 ~2 ~3 ~6u
U
~65 ~128
Fig. 3.1--Schematic illustrating the arrangement

of nodal displacements in PE memory .
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DESTINATION OF NONZERO INFLUENCE COEFFICIENTS IN PE MEMORY

s
F pﬁo PE1 P?Z P?S PEO PE1 PE2
4 [ A A 0 0 ... 0 A A oo
3 =11 %] 2 14566 *1 4967
] A A A 0 0 A
] x21 %22 223 2,67
' 0 A
4 x32

[é] = 0 0

ANLN
| B

INFLUENCE COEFFICIENTS IN PE MEMORY

%
PEO PE1l PE2 L, PEk

\~-
A A A A
211 x12 %1567 ~1,K
A A A g
x21 X1 966 X293 .

éz,e? én,k
?m,ss
An,k+64
"\~
Fig. 3.2--Schematic illustrating the arrangement of the
influence coefficients énm in PE memory.

51




YRS A o

will arrive in the PE that contains the corresponding nodal
displacement. For a 3-D problem, 9 parallel multiplications
can then be performed for each 10 rows of influence coeffi-

cients that arrive from the disk. The only PE interactions

that are needed, even for irregular grid configurations, result
from summing accumulated products between PE's — one Trow sum
per row of the sparse matrix [A]. More detail on our sparse
matrix multiply scheme is presénted in the following section
and in Appendix II.

3.2.3 Time Stepping

The time stepping process consists of the calculation
of Eq. (3.5) for each time step. The first term {V(t)} of
Eq. (3.5) involves column vector operations which require no
interaction amongst ILLIAC PE's. As a result, it is easily
computed in a parallel process. Similar column vector onera-
tions are involved in the calculation of {gd(t)}. The sig-
nificant calculation is the multiplication of the vector
{Qd(t)} by the large sparse matrix [é]. This multiplica-
tion accounts for almost all of the coﬁputation time that
is required to complete one numerical time step. A sophis-
ticated but simple mechanism has been developed to perform
the sparse matrix multiply in parallel (Frazier, et al., 1973).
The non-zero terms of [A] in Eq. (3.5) are arranged on disk
so that each 3 x 3 submatrix énm arrives in the PE contain-
ing Qﬁ. Furthermore, as successive terms of [5] are read
from disk the matrix row nuabers n increase monotonically
(but not necessarily sequentially) in each PE. This is done
so that the sparse matrix multiply can be completed in the
order of ascending row number.

The first submatrix Anm to arrive in each PE from

~
-~

the disk (the énm with the lowest row number n that ap-

£

pears in each PE) is multiplied by the three-component vector
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gg and the results are accumulated in a buffer R along
with the row number identifier n. This operation allows
some PE's to work on the same row number n while other
PE's work ahead on other row numbers. Since several rows
may be processed simultaneously, a look-ahead buffer {R}

is maintained in each PE which contains both the elements

R and the row number n. Since rows will continuously be
completed as new ones are started, {B} need only be large
enough to contain the maximum number of R's to be worked
on at one time in any given PE. On the average, all of the
multiplies for 64/27 = 2.4 rows of the sparse matrix multiply
are completed after such an operation. Rows that correspond
to boundary nodes require less calculation.

During the matrix multiply, a test is made to see if
all contributions from the sparse matrix multiply are ready
to be summed for the node n . If all of the row numbers n
from the submatrix multiply are greater than n o, then all
contributions for n - are completed (all PE's are now work-
ing on contributions to higher node numbers). The contribu-
tions for n are then summed and added to the other terms
in Eq. (3.5) to obtain the advanced nodal displacements
gno(t+At). This displacement vector is stored in PEk, k
being the remainder of no-l divided by 64. If the rontribu-
tions from row n°+1 are completed, then node n°+1 is also
advanced in time by summing contributions from participating
PE's, otherwise the next submatrix multiply in line for each
PE is performed. The parallel submatrix multiplies, row sums,
and disk reads continue until all of the [A] matrix has
been processed and all nodes have been advanced in time. The
entire operation is repeated for each time step. (A more

detailed description of the sparse matrix multiply appears in
Appendix B.)
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3.2.4 Tests

The first version of linear SWIS was coded in GLYPNIR
and also in ASK. Several tests were made with the GLYPNIR
code on the ILLIAC IV simulator at UCSD (Frazier, et al.,
1973). The GLYPNIR version of linear SWIS with a simple
grid generator became operational on the ILLIAC IV in April
1973. Because of difficulties with the disk hardware at
that time, SWIS was run with the [A] matrix held entirely

in core. Several test runs involving the propagation of
planar P waves in 3-D media have been made to check bound-
ary conditions in the code. Successful runs of over 100
seconds on the ILLIAC were completed.
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3 LAGRANGIAN STRESS WAVE CODE

(3]

.3.1 Grid Configuration

A flexible scneme, described in Section IT, has been
devised for numerically simulating stress waves in geologic
materials. The flexibility for handling highly irregular
grid configurations has been compromised somewhat in adapt-
ing the scheme to the ILLIAC.

The guneral numericaj scheme admits mixed element
types (e.g., trahedra apd hexahedra) with nonsystematic
node and element numbering. Because of the difficulties in

transferring information between PE's in an arbitrary manner

on the ILLIAC, we associate grid Cross-sections with PE's, as
1llustrated in Fig. 3.3, Adjacent grid Cross-sections are
dssociated with adjacent PE's so that points which are adja-
cent in the grid appear in the same or adjacent PE's,

The first grid dimension, which is normal to grid
section mentioned above, is Strung across PE's. This enables
a string of 64 elements, lying in 64 contiguous Cross-sections,
to be processed in parallel. We note that the first grid
dimensio: does not necessarily correspond to the first problem
coordinate. To insure totally parallel operations for the
bulk of the Ccalculation< on the ILLIAC, the requirement is
made that each element string in the first grid dimension cop-
tains elements of the same basic type. That is, one element
string cannot contain both tetrahedral and hexahedral (skewed-
brick) eclements. The present operating version of SWIS treats _
only one element type over the entire grid: 8-node hexahedra y
in 3-D, 4-node quadralaterals in 2-D, and 2-node 1line segments
in 1-D. This restriction may be 1ifted in the future to aj-

low for varying element types between element strings,
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Fig. 3.3--Relationship between grid geometry and
PE storage.

56




The requirement for uniformity of elemert types
imposes restrictions only on the connectivity between
elements, not on the size or shape of the elements. No
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